

Gainesville, FL Tuesday to Wednesday February 20-21, 2024

EVALUATING AUTOMATED DRAIN TILE SYSTEM IN SUBIRRIGATED VEGETABLE PRODUCTION AREAS

Judyson Oliveira^{1*}

Mark W. Clark² Lincoln Zotarelli¹

^{1*}Ph.D. in Agronomy and Ph.D. student in Horticulture; <u>judyson.dematoso@ufl.edu</u>
¹Horticultural Sciences Department, University of Florida, United States
²Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA

Figure. Geographical representativeness of the irrigated vegetable production lands in Florida. Data source: Florida Statewide Agricultural Irrigation Demand Estimated Agricultural Water Demand, 2021 - 2045. Published by FDACS in 2023.

Seepage irrigation

Figure. Seepage irrigation layout , with component parts typically used in Florida potato production areas. Adapted from Silva et al. (2018).

Seepage irrigation

Subirrigation with drain tile

Subirrigation with drain tile (SDT)

Figure. Drain-tile irrigation layout, with component parts typically used in Florida potato production areas. Adapted from Silva et al. (2018).

Figure. Drain-tile irrigation layout. Source: USDA(<u>https://www.youtube.com/results?search_query=usda+drain+tite+ilustrartion</u>)

Precision irrigation tools to assist growers in increasing vegetable production and water conservation are needed!

Can we automate drainage/irrigation to better control the WTL during the crop season?

Evaluate an automated drain-tile for managing <u>irrigation and drainage</u> on nutrient and soil water management in comparison to seepage irrigation. Experimental area

M&M

Figure. Aerial image of UF/IFAS Hastings Agricultural Extension Center, in Hastings, FL. The yellow polygon indicates drain tile area and the pink polygon indicates the seepage irrigated area. Arrows indicate water quality monitoring stations and weather station. White polygons indicate a test bed with N and P treatments conducted during spring potato season. Blue dots indicates the water table level (WTL) monitoring wells.

Automation of drain-tile: rainage and irrigation

A) Drainage

Figure. A) Replacement of convention drain-tile structure by the multilevel control structure with electronic drain-valve, flow measurement structure, and radio communication control panel in drain-tile system (SDT); and B) Irrigation manifolds installed in SDT with flowmeter and electronic ball valve and radio communication control panel.

Figure. Irrigation and drainage events during February 2023, using the automated subsurface drain-tile system.

Drainage water Management (Above Set Foint Lever Table).									
Lvl Number	Lvl Height	Wait Timer		Duration		Timer Status			
1	2.0"	14.00 hrs		0.20 hrs					
2	3.0"	10.00 hrs		0.30 hrs					
3	4.0"	5.0	.00 hrs 0.40 hr		s				
4	5.0"	1.00 hrs		0.50 hrs					
Irrigation & Drainage (Below Set Point Level Table):									
Lvl Number	Lvl Heigh	Lvl Height		Wait Timer		mer Status			
1	2.0"	2.0"		1.00 hrs					
2	2.0"		1.00 hrs						
3	2.0"	1.0		.00 hrs					
	0.01	4.001							

Figure. Irrigation schedule using the "**time of allowance**" toll available on the AgriDrain corporation dashboard.

Year-round monitoring of water and nutrient management

Water management

- Precipitation : local weather station (FAWN)
- Evapotranspiration
- Drainage : flowmeters installed in the main ditches
- Soil moisture
- Water table level : pressure transducers

Nutrient monitoring: N and P

- Water table samples
- Drainage sample
- Soil samples

Crop management: potato and cover crop

- Total yield
- Marketable yield
- Total fertilizer applied

Rainfall and drainage

Results

Water table level

Results

Figure. Water table level (WTL) and rainfall measured in areas irrigated by seepage (SEE) and subirrigation with drain tile (SDT) installed at the HAEC/UF during the year 2023.

Results Water inputs and outputs

Table. Total of irrigation, precipitation, crop evapotranspiration (ETc), drainage, and unaccounted water volume losses in seepage and subirrigation drain-tile systems during the year 2023.

	ir	nput	output			
Irrigation method	Precipitation	Irrigation	Drainage mm Seepage	Etc	Unaccounted ¥	
on	276 1	<mark>↑ 35%</mark> 367	↑ 21% 187 ↑ 38%	225	230	
on	276	241	Drain-tile 146	225	145	

Y Unaccounted water loses = (precipitation + irrigation) – (ETc + drainage)

Crop production

Results

Table. Summary of potato total and marketable yield, tuber size classes, and specific gravity (SG) in the potato beds 207-SEE (seepage) and 217-SDT (subirrigation drain-tile) cultivated during the spring 2023 with ten different P and N fertilizer rates in the spring potato season of 2023.

	Total yield	Marketable yield <i>wt/A</i>	Specific gravity	Irrigation water productivity ४ kg/m3
Irrigation method		Seepage		-
Average ± SD	287±16	227±15	1.076±0.003	7.9
-		Drain-tile		
Average ± SD	300±26	244±22	1.081± 0.002 🖌	<mark>► 38%</mark> 12.6

Y Irrigation water productivity = marketable yield / irrigation

- Automated controlled irrigation system efficiently controlled the irrigation/drainage events in drain-tile.
- Automated drain-tile could lead to improved control of drainage resulting in less requirement for irrigation during crop development.

Ongoing...

• Our testing will continue year-round for the next two-years.

Research Team

Dr. Lincoln Zotarelli (PI) Dr. Judyson Oliveira (RA) Mr. Dakota Johnson Mr. David Baggett **Collaborators:**

Dr. Gerardo Nunez

Dr. Mark Clark

Dr. Sandra Guzmán

Thanks judyson.matoso@ufl.edu judyson.matos@hotmail.com

Financial support:

Office of Agricultural Water Policy at the Florida Department of Agriculture and Consumer Services (OAWP-FDACS)

